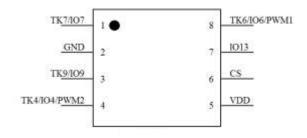
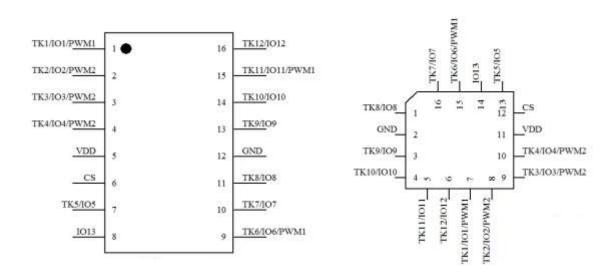

一、概述

BCT8066是一款多键电容式触摸检测芯片,采用 CMOS 工艺制造,基于 8Bit MCU Base,性能稳定,高抗干扰。芯片最多支持 12 路触摸通道,支持 2 路硬件 PWM 输出,IO 保持或同步输出等。芯片通过软件控制可以有多种模式输出。芯片可广泛应用于小家电、智能家居、触摸手环、AI 智能产品及其他 DC 类触摸按键检测产品上,实现产品智能化。

二、产品特点


- 工作电压: 2.5~5.5V
- 低功耗模式约 10uA(3.7V 无负载)
- 芯片内置软件算法、,可有效防止外部噪声干扰而导致的误动作
- 环境值自动校准算法,工作环境发生变化可以快速自动适应
- 抗干扰性能好, ESD 可达 4KV
- 产品可用于玻璃、陶瓷、塑料等介质表面


三、框架图

四、封装及引脚描述

NO.	名称	描述
1	TKx	触摸输入通道(1~12)
2	IOx	普通 IO 口(1~13)
3	PWMx	硬件 PWM 输出(1~2)
4	VDD/AVDD	数字/模拟正电源
5	GND/AGND	数字/模拟负电源
6	CS	触摸采样电容脚

五、应用方式说明:

型号	说明		
BCT8066-1	6 输入 6 同步高电平有效推挽输出		
	4 方向滑调 4 路低电平有效开漏输出		
	IO5、IO6、IO7、IO8 空闲状态为高阻,滑调有效输出状态为		
	低电平 100ms,随后回到空闲状态。		
BCT8066-2	当 T6→T1 或 T1→T4 感应时,A 输出;		
	当 T5→T1 或 T1→T2 感应时,B 输出;		
	当 T4→T1 或 T1→T6 感应时 , C 输出 ;		
	当 T2→T1 或 T1→T5 感应时 , D 输出 ;		

六、功能描述

1.基本功能

BCT8066触摸输入通道、输出通道可灵活配置。支持普通 IO 高低电平同步、保持、开漏、推挽输出,8bit 分辨率 PWM 输出。输入输出模式可由芯片内部 MCU 软件控制。

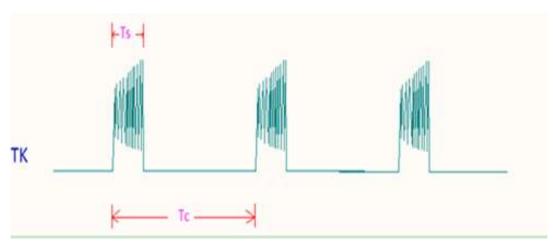
BCT8066有快速、低功耗两种工作模式时,在低功耗模式下,检测到触摸会立即唤醒切换到快速模式。 在快速模式下如果持续10s没有检测到触摸按下会自动切换到低功耗模式,低功耗模式下的触摸检测时间可调整,静态功耗也会有相应变化,触摸唤醒越灵敏,则功耗越高。

2. 平滑滤波

内置软件高效触摸滤波算法,可有效的滤除噪声,防止触摸误触发,提高可靠性。

3. 环境值实时自校准

内置环境值实时跟随算法,自动匹配不同触摸介质的环境值,方便生产。介质环境值计算匹配时有可能出现触发输出的情况,此时需等待环境值匹配完成,输出会终止,并以当前环境值作为之后的触发标准。 当介质改变,环境值也会跟随。不同的介质匹配时间不同。



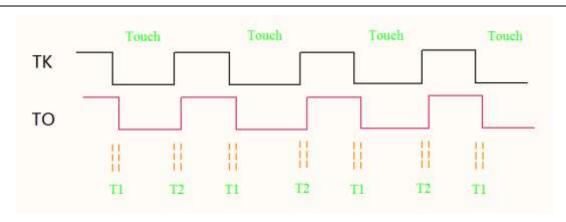
4. 灵敏度调节

芯片的 CS 脚位默认接 GND 的电容用来调整整体灵敏度。CS 电容建议调整范围是 10~47nF,推荐的典型值是 33nF。在此范围内,电容值越大,灵敏度越高,电容值越小,灵敏度越低。因电容前期调试时,需做匹配测试,建议用 0402 封装。

在单独的输入通道增加电容(0~10pF),可独立调整通道的灵敏度。此电容值越大灵敏度越低。

5.输入检测电路

Ts 检测宽度随灵敏度增加而加长。CS 电容值越大,检测时间越长,灵敏度越高。检测时间长短也与软件和外围器件有关。


TC 是检测周期:

模式	Tc侦测时间	备注		
快速模式	20±1ms	侦测时间会随软件不同有略微差异		
低功耗模式	200±5ms			

6.输出波形示意图

触摸输出示意图(以同步输出低电平为例):

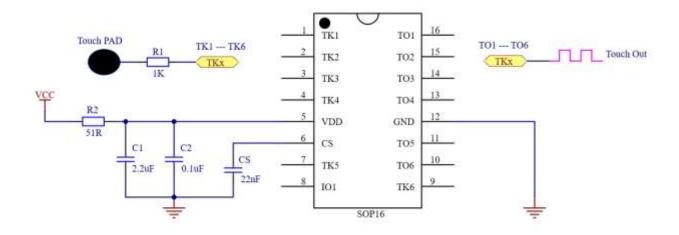
注:T1为 Touch 响应延迟时间, T2为 Touch 撤销延迟。

延迟时间一般在 1ms~10ms 之间。

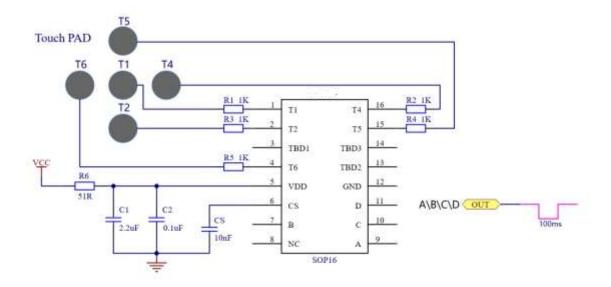
七、绝对最大值(所有电压以GND为参考)

项目	符号	额定值	单位
电源电压	V_{DD}	2.0 ~ 5.5	V
输入/输出电压	V _I / V _O	GND-0.3 ~ VDD+0.3	V
工作温度	T _{DD}	-20 ~ 70	°C
储藏温度	T _{ST}	-50~ 125	°C

注:最大电压不能超过 5.5V, 否则可能永久性的损坏 IC。

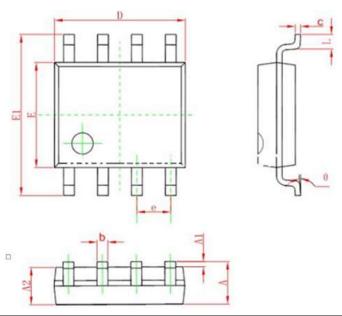

八、 电气参数 (所有电压以 GND 为参考, VDD=3.3V, Cs=22nF, 环境温度为 25℃)

参数	符号	条件	最小值	典型值	最大值	单位
工作电压	VDD		2.0	3.3	5.5	V
静态工作电流 (启用内部稳压电路)	I_{DD}	低功耗模式	5	10	15	uA
		工作模式	80	100	200	uA
输入引脚	V _{IL}	输入低电压范围	0	-	0.2	VDD
输入引脚	V_{IH}	输入高电压范围	0.8	-	1.0	VDD
ESD 等级	-		-	4	-	KV



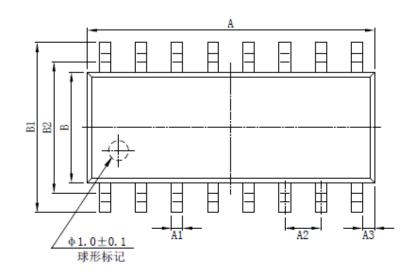
九、典型应用电路

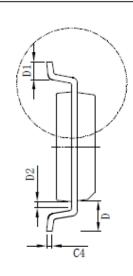
1.六输入六输出

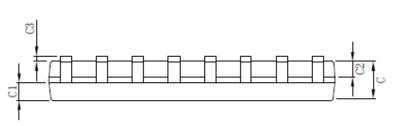

2.4 方向滑调输入 4 路对应输出

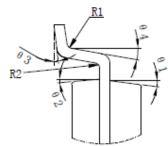
十、封装尺寸 (SIZE)

1.SOP8

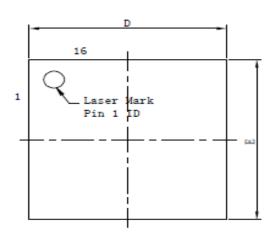


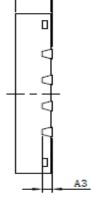

Symbol	Dimensions (mm)				
Symbol	Min Prefer		Max		
А	1.35	1.6	1.75		
A1	0.1	0.15	0.2		
A2	1.35	1.45	1.55		
b	0.35	0.4	0.5		
С	0.1	0.15	0.2		
D	4.85	5	5.15		
E	E 3.85		4.15		
E1	E1 5.8		6.2		
e	1.2	1.25	1.3		
L	0.4	0.5	0.6		
θ	0°	8°	13°		



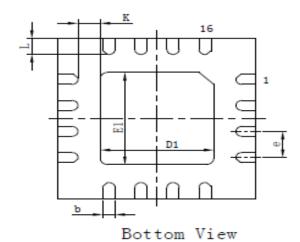

2.SOP16

标注	最小(㎜)	最大(㎜)	标注 尺寸	最小(㎜)	最大(㎜)	
A	9.80	10.00	C4	0. 203 0. 233		
A1	0.356	0. 456	D	1. 05TYP		
A2	1. 27TYP		D1	0. 40	0. 70	
A3	0. 30	02TYP	D2	0. 15 0. 25		
В	3.85	3. 95	R1	0. 20TYP		
B1	5.84	6. 24	R2	0. 20TYP		
B2	5. 00TYP		θ 1	8° ∼ 12° TYP4		
С	1.40	1.60	θ 2	8° ∼ 12° TYP4		
C1	0.61	0.71	θ 3	0° ~ 8°		
C2	0.54	0.64	θ 4	4°	~ 12°	
C3	0.05	0. 25				

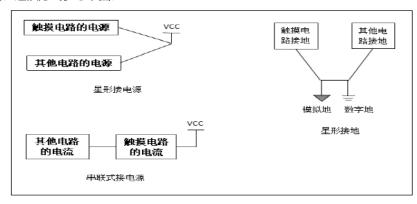


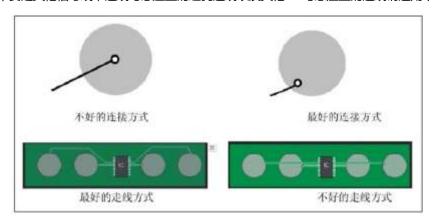


3.QFN16-4*4mm


标注	最小	标准	最大	标注	最小	标准	最大
A	0. 70	0. 75	0.80	D1	2. 20	2.30	2. 40
A1	0.00	_	0.05	E1	2. 20	2.30	2. 40
A3	0. 203REF			e	0. 65TYP		
Ъ	0. 20	0. 25	0.30	K	0.20	_	_
			0.00	**	0.20		
D	3. 90	4. 00	4. 10	L	0.30	0.40	0. 50

Top View


Side View



十一、注意事项 (Layout)

① 触摸芯片最好用一根独立的走线从板子的供电点取电,不要和其他的电路共享电源回路,如果做不到完全独立, 也应该保证供电电源线先进入触摸芯片再引到其他电路的电源,这样可以减少其他电路在电源上产生的噪声对触 摸芯片的影响。连接方式参考下图。

- ② 按键感应盘应尽量紧密贴在面板上,中间不能有空气间隙,当用平顶圆柱弹簧时,触摸线和弹簧连接处的镂空铺地直径应该稍大于弹簧柱体直径,保证弹簧即使被压缩到 PCB 板上,也不会接触到铺地
- ③ 各个触摸 PAD 间的距离尽可能的大一些(大于 3mm),这样可以减少它们形成的电场之间相互干扰。尽可能的铺地隔离,拉大各触摸 PAD 的间距,对提高灵敏度有一定帮助
- ④ 建议使用双面 PCB 板,触摸芯片和感应盘到芯片引脚的连线应放在背面,感应盘应放在顶面,安装时紧贴触摸面板。
- ⑤ 触摸按键线不要与其他信号线近距离平行(双面板中,板的两层之间近距离平行也不建议),如果必须平行,可在中间铺地隔离,触摸线避免跨越其他信号线,尤其是强干扰,高频的信号线,感应盘到触摸芯片的连线周围0.5mm 不要走其他信号线,连线与感应盘的过孔连线以及其他 IC 与感应盘的连线请选用下图连接方式

⑥ 顶层感应盘外 GND 应铺网格铜。底层铺实心铜,感应盘正下方不铺铜。